

Sensor Fusion for Intelligent Process Control

PPG Industries
University of Utah
Sandia National Laboratories

Department of Energy Office of Industrial Technologies, Sensors & Controls Annual Review Meeting, Las Vegas, June 11-12, 2002

Project Team

PPG Industries

Mehran Arbab, John Connors, Craig Dodge, Mark DeYoung, Ray Farrar, Dave Hanekamp, Yu Jiao, Ray Mayer, Al Miller, Mike Stokes, Rajiv Tiwary, Kevin Hill

University of Utah

Padmabhushana Desam, Philip Smith

Sandia National Laboratories

Lee Bertram, Bob Gallagher, Robert Hillaire (925) 294-2619, William Houf, Pete Walsh

Intelligent Process Control: Goal

- Improve the combustion and emissions performance of air-natural-gas-fired regenerative glass melting furnace using hierarchical model-based combustion control to improve yields and fuel efficiency
 - Modeling and Simulation
 - Benchmark Furnace Performance
 - Sensors
 - Controls

Project Status

- Closing out project
 - Mid project cancellation
 - Afforded closeout funding to mitigate impact on PPG due to lost investment
- Modeling effort made tremendous progress and will continue until present work in complete
- Benchmark effort is complete and has presented a thorough report on furnace performance
- <u>Sensor effort</u> focused on air, flue gas, and oxygen measurements and has presented a thorough survey of existing technologies
- <u>Control effort</u> conducted a series of characterization tests and will modify the existing control structure

Funding and Spending

Benchmark and Sensor Findings

• Benchmark:

- Established history of yield and output versus process parameters
- Discovered a locations for a temperature sensor that correlates very well to several aspects of furnace performance and condition

• Sensor:

- Measurement of air flow
 - Large fraction of the metered combustion air never reaches the furnace
- Measurement of flue gas flow
 - Large fraction of the stack flow is contributed by inleakage
 - Furnace apparently lean, but actually rich
- Identified most attractive technologies for sensing oxygen in the furnace and flues:
 - Platinum/zirconia probes-now
 - Diode laser absorption (Air Liquide/PSI S&C Project)-as soon as available

Control Work

- Crown temperature control: replaced a cascaded PID control loop with an Extended Horizon Self Tuning Control (EHSTC) loop
 - Reduced frequency of crown temperature fluctuation
 - Reduced operator intervention
- Control Infrastructure: implemented a batch control interface and quality control interface
 - Provided infrastructure for end-to-end process control
- NOx Control: performed series of experiments to characterize NOx production
 - Identified confounding process variables
 - Identified relationship between NOx and process variables

NOx Control Experiments

- Goal: Reduce and control NOx production while maintaining production levels and product quality
- Four days of intensive process manipulation
 - Shutting down control loops
 - Determine control loop interactions
 - Manipulating process variable
 - Whole furnace manipulation
 - Individual port manipulation
 - Identify relationship between process variable and process output
 - Identify process dynamics
 - Identify process sensitivity
- Presently performing extensive follow-up experiments on a more challenging glass product

NOx Control Experiments Excerpt

Analysis of NOx Experiments

- Performed a statistically significant number of process manipulations to identify NOx Production:
 - Time Constant
 - Transport delays (from controls manipulation to measurement)
 - Gain: magnitude of NOx production to process control effort
 - Confirm NOx production conditions (furnace leak rates)
 - Identify NOx production confounding process interactions
 - Determined level of firing cycle hysteresis

Wrapping up the Control Work

- We will analyze the ongoing NOx production test results
- We will manipulate the NOx control loops to utilize the knowledge gained during this project
- We will detail all of our control related findings in a report

Project Conclusions

- This high risk project that PPG has taken on has produced some high payoffs for the community
 - High risk: loss of production, quality, and profits
 - High payoff: furnace control knowledge that will reduce pollution while increasing productions rates and maintaining quality and profit
- Afforded the National Laboratories and Universities the opportunity to provide help to US industry with a real problem with immediate benefit